If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+36x=320
We move all terms to the left:
4x^2+36x-(320)=0
a = 4; b = 36; c = -320;
Δ = b2-4ac
Δ = 362-4·4·(-320)
Δ = 6416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6416}=\sqrt{16*401}=\sqrt{16}*\sqrt{401}=4\sqrt{401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{401}}{2*4}=\frac{-36-4\sqrt{401}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{401}}{2*4}=\frac{-36+4\sqrt{401}}{8} $
| -8c-16=-10c | | 8-9y=8y+40 | | 10•x-20=3 | | 5x-22=2x-1 | | 4(x+5)-1=39 | | 20-12j=-10j-14 | | 2(5x-3=24 | | 2n+9=16 | | -4x+7x=5(x-4) | | 5^x+1-5^x-1=120 | | 21/6+x=5 | | 19r-9r-15=-r+18 | | 3/4h-12=8(5/8) | | X=150+-1y | | X-10=4x+9 | | 8+4c=8c-8 | | a-5=3=8 | | -5(2x+8)=-2(5x=8) | | 2(a+8)=21+7a | | -3-8d=3-7d-10 | | -3-8d=3-7d-@0 | | a+21=64 | | 9n-2n+1=40+3 | | 5z+6=4z | | 12=2u+4u | | 4(2x+3x)=12 | | 5(x)=14-0.5x | | 3/4(12+x)=36 | | -(2+4x)+8=12-3x-2 | | 59+13nn=44 | | 5x-16=3x+8 | | 2x=+5=12 |